Fotowoltaika - Kolektor próżniowo-rurowy

panele fotowoltaiczne sklep
Kolektor próżniowo-rurowy składa się z: rur próżniowych, w których element zbierający ciepło, tzw.

absorber, znajduje się w próżni, co znacznie poprawia działanie kolektora w obrębie szerokości geograficznych takich, na jakich znajduje się Polska.

Absorpcja ciepła słonecznego nie jest wówczas uzależniona w tak znaczącym stopniu od temperatury zewnętrznej, dzięki czemu stosując panel tego typu można liczyć na zyski ciepła w instalacji nawet w mroźne zimowe słoneczne dni, niektóre z kolektorów posiadają zwierciadło, dodatkowo doświetlające absorber ze strony odsłonecznej.

Jest ono wykonane poza rurkami, bądź naniesione na rurkę próżniową w postaci lustra, w zależności od producenta. Kolektory próżniowo-rurowe mają nieco większą wydajność niż kolektory płaskie, ale technologia wykonania sprawia, że ich instalacja jest rozwiązaniem droższym.

Kolektory tego typu są również mniej wytrzymałe np. na grad, a także zimą, gdy spadnie na nie śnieg, nie ma możliwości zastosowania tak zwanego obiegu odwróconego w celu rozmrożenia kolektora i usunięcia z nich śniegu (takie rozwiązanie jest w kolektorach płaskich). Kolektory słoneczne płaskie i próżniowe są w stanie dostarczyć do ok.
60% ciepła potrzebnego do ogrzewania wody użytkowej w ciągu roku.
Kolektory próżniowe wymagają jednak mniejszej powierzchni zabudowy, ten sam efekt wydajności cieplnej jak dla kolektorów płaskich o powierzchni, przykładowo 5 m2 uzyska się z kolektora próżniowego o powierzchni 3 m2potrzebny przypis.Źródło: https://pl.wikipedia.org/wiki/Kolektor_s%C5%82oneczny

Kilka fizycznych faktów o efekcie fotoelektrycznym

panele fotowoltaiczne sklep
Zaproponowane przez Alberta Einsteina wyjaśnienie zjawiska i jego opis matematyczny oparte jest na założeniu, że energia wiązki światła pochłaniana jest w postaci porcji (kwantów) równych \displaystyle h\nu h\nu , gdzie h jest stałą Plancka, a \displaystyle \nu \nu oznacza częstotliwość fali.
Kwant promieniowania pochłaniany jest przy tym w całości.

Einstein założył dalej, że usunięcie elektronu z powierzchni metalu (substancji) wymaga pewnej pracy zwanej pracą wyjścia, która jest wielkością charakteryzującą daną substancję (stałą materiałową).

Pozostała energia unoszona jest przez emitowany elektron. Z tych rozważań wynika wzór: \displaystyle h\nu =W+E_k \displaystyle h\nu =W+E_k gdzie: h ? stała Plancka; ? ? częstotliwość padającego fotonu; W ? praca wyjścia; Ek ? maksymalna energia kinetyczna emitowanych elektronów. Hipoteza kwantów wyjaśnia, dlaczego energia fotoelektronów jest zależna od częstości światła, oraz że poniżej pewnej częstotliwości światła zjawisko fotoelektryczne nie zachodzi. Einstein opublikował swoją pracę, w której wyjaśnił zjawisko fotoelektryczne, w Annalen der Physik w 1905 r. Otrzymane równanie zostało potwierdzone doświadczalnie przez Millikana.

Millikan był zagorzałym przeciwnikiem koncepcji Einsteina i przez 10 lat eksperymentował próbując ją obalić.

Paradoksalnie, jego doświadczenia stały się koronnym dowodem słuszności kwantowej natury światła.

Co więcej, precyzyjne pomiary Millikana umożliwiły bardzo dokładne wyznaczenie stałej Plancka.

Równanie opisujące zależności energetyczne w fotoefekcie nazywane bywa równaniem Millikana-Einsteina. W 1921 roku Einstein uzyskał Nagrodę Nobla, za specjalne osiągnięcia w dziedzinie fizyki, w szczególności za wyjaśnienie efektu fotoelektrycznego (teoria względności nie była wtedy jeszcze wystarczająco poparta obserwacjami). Idea kwantu energii została zapożyczona przez Einsteina z prac Plancka dotyczących wyjaśnienia zjawiska promieniowania ciała doskonale czarnego.Źródło: https://pl.wikipedia.org/wiki/Efekt_fotoelektryczny#Obja.C5.9Bnienie_zjawiska

Za WIkipedią, kilka słów o - Światło słoneczne na Ziemi

Światło słoneczne jest podstawowym źródłem energii w bilansie energetycznym Ziemi jako ciała niebieskiego, jak i bezpośrednio lub pośrednio dla niemal wszystkich forma życia.

Jedynym znaczącym źródłem energii, które nie jest promieniowaniem słonecznym i nie powstało w wyniku przetworzenia energii, jest energia rozpadów promieniotwórczych pierwiastków wewnątrz Ziemi. Światło słoneczne przed wejściem do atmosfery ziemskiej przenosi 1368 W na metr kwadratowy powierzchni, ustawionej prostopadle do promieni138 i składa się (w procentach całkowitej energii) z około 50% promieniowania podczerwonego, 40% światła widzialnego i 10% ultrafioletu139. Światło słoneczne, przechodząc przez atmosferę, zostaje osłabione w wyniku pochłonięcia i rozproszenia przez atmosferę Ziemi, tak że w najbardziej sprzyjających warunkach, przy czystym niebie, gdy Słońce znajduje się w pobliżu zenitu, do powierzchni dociera około 1000 W/m?140.

Atmosfera w szczególności pochłania ponad 70% słonecznego ultrafioletu, szczególnie w krótszych długościach fal141.

Rozpraszanie światła słonecznego zmienia jego temperaturę barwową, która w zależności od wysokości Słońca osiąga około 5400 K, gdy Słońce jest w pobliżu zenitu, 3500 K na godzinę przed zachodem, około 2000 K w momencie wschodu i zachodu Słońca.

Światło słoneczne rozproszone na czystym niebie może mieć temperaturę barwową nawet 16 000 K142. Energia słoneczna zapewnia utrzymanie temperatury powierzchni Ziemi, może być wykorzystana w różnych procesach naturalnych i technologicznych ? fotosynteza roślin pochłania energię promieniowania słonecznego i przekształca ją w energię chemiczną (związki tlenu i zredukowanego węgla), podczas gdy bezpośrednie ogrzewanie lub zamiana na energię prądu elektrycznego przez ogniwa słoneczne są wykorzystywane w energetyce słonecznej do wytwarzania energii elektrycznej lub wykonywania użytecznej pracy; czasem wykorzystuje się do tego koncentrowanie energii słonecznej.

Także energia zmagazynowana w ropie naftowej i innych paliwach kopalnych została w odległej przeszłości przekształcona przez proces fotosyntezy z energii promieni słonecznychŹródło: https://pl.wikipedia.org/wiki/S%C5%82o%C5%84ce#.C5.9Awiat.C5.82o_s.C5.82oneczne_na_Ziemi.